

Max. Marks: 100 Date: 27.11.2022

ABHIMANYU BATCH

PHYSICS: REVISION TEST-4 (SET A)

Topics: EMI, Oscillation, Sound Waves and Stationary Waves

1.	A block resting on the horizontal surface executes SHM in horizontal plane with amplitude A. The frequency of
	oscillation for which the block just starts to slipis (where, μ = coefficient of friction, g = gravitational
	acceleration)

- (a) $\frac{1}{2\pi}\sqrt{\frac{\mu g}{A}}$ (b) $\frac{1}{4\pi}\sqrt{\frac{\mu g}{A}}$ (c) $2\pi\sqrt{\frac{A}{\mu g}}$ (d) $4\pi\sqrt{\frac{A}{\mu g}}$
- 2. A particle executes a simple harmonic motion of time period T. Find the time taken by the particle to go directly from its mean position to half the amplitude
 - (a) T/2 (b) T/4 (c) T/8 (d) T/12
- 3. Two simple harmonic motions of angular frequency 100 and 1000 rad s⁻¹ have the same displacement amplitude. The ratio of their maximum acceleration is
 - (a) 1:10 (b) $1:10^2$ (c) $1:10^3$ (d) $1:10^4$
- 4. The average acceleration of a particle performing SHM over one complete oscillation is
 - (a) $\frac{\omega^2 A}{2}$ (b) $\frac{\omega^2 A}{\sqrt{2}}$ (c) zero (d) $A\omega^2$
- 5. U is the PE of an oscillating particle and F is the force acting on it at a given instant. Which of the following is correct?
 - (a) $\frac{U}{F} + x = 0$ (b) $\frac{2U}{F} + x = 0$ (c) $\frac{F}{U} + x = 0$ (d) $\frac{F}{2U} + x = 0$

difference between them is

(a)

6.				•		•		ximum velocity is		
	(a)	0.10 ms^{-1}	(b)	0.15 ms^{-1}	(c)	0.8 ms ⁻¹	(d)	0.26 ms^{-1}		
7.	_	periodic time of a ton to half the max	_			is 4s. The time	taken by it	do go from its mean		
	(a)	2 s	(b)	1 s	(c)	$\frac{2}{3}$ s	(d)	$\frac{1}{3}$ s		
8.	The g	graph between the	time perio	d and the length	of a simple po	endulum is				
	(a)	straight line	(b)	curve	(c)	ellipse	(d)	parabola		
9.	The p	potential energy of	a simple l	harmonic oscilla	tor, when the	particle is half wa	y to its end	point is		
	(a)	$\frac{1}{4}E$	(b)	$\frac{1}{2}E$	(c)	$\frac{2}{3}E$	(d)	$\frac{1}{8}$ E		
	(when	re, E is the total er	nergy)							
10.		In SHM restoring force is $F = -kx$, where k is force constant, x is displacement and A is amplitude of motion, then total energy depends upon								
	(a)	k, A and M	(b)	k, x, M	(c)	k, A	(d)	k, x		
11.	The c	The displacement equation of a simple harmonic oscillatory is given by								
	y = A	sin ωt – B cos α	ot							
	The a	amplitude of the or	scillator w	ill be						
	(a)	A - B	(b)	A + B	(c)	$\sqrt{A^2 + B^2}$	(d)	$(A^2 + B^2)$		
12.		•		•	•	•	•	ine. If they pass one amplitude, the phase		

Space for Rough Work

(c)

(d)

 $\frac{\pi}{4}$

(b)

13.	A simple pendulum of length l and mass (bob) m is suspended vertically. The string makes an angle θ with t	he
	vertical. The restoring force acting on the pendulum is	

- (a) mg tan θ
- (b) - mg sin θ
- (c) $mg sin \theta$
- (d) $- mg cos \theta$
- 14. The displacement of a particle performing simple harmonic motion is given by, $x = 8 \sin \omega t + 6 \cos \omega t$, where distance is in cm and time is in second. The amplitude of motion is
 - 10 cm (a)
- (b) 2 cm
- 14 cm
- (d) 3.5 cm
- 15. A point mass m is suspended at the end of a massless wire of length L and cross-section area A. If Y is the Young's modulus for the wire, then the frequency of oscillations for the SHM along the vertical line is
 - (a)
- (b) $2\pi \sqrt{\frac{\text{mL}}{\text{YA}}}$ (c) $\frac{1}{\pi} \sqrt{\frac{\text{YA}}{\text{mI}}}$
- (d) $\pi \sqrt{\frac{mL}{V\Lambda}}$
- The minimum phase difference between two simple harmonic oscillations, $y_1 = \frac{1}{2} \sin \omega t + \frac{\sqrt{3}}{2} \cos \omega t$, 16. $y_2 = \sin \omega t + \cos \omega t$ is
- (b) $\frac{\pi}{12}$
- (c) $-\frac{\pi}{6}$
- (d) $\frac{\pi}{6}$
- An SHM is represented by $x = 5\sqrt{2}$ (sin $2\pi t + \cos 2\pi t$). The amplitude of the SHM is 17.
 - (a) 10 cm
- 20 cm (b)
- $5\sqrt{2}$ cm (c)
- (d) 50 cm
- A progressive wave is represented by $y = 12 \sin (5t 4x)$ cm. On this wave, how far away are the two points 18. having phase difference of 90°?
 - $\frac{\pi}{2}$ cm (a)
- (b) $\frac{\pi}{4}$ cm
- (c) $\frac{\pi}{8}$ cm
- (d) $\frac{\pi}{16}$ cm

19.	When the observer moves towards the stationary source with velocity, v ₁ the apparent frequency of emitted note is
	f_1 . When the observer moves away from the source with velocity v_1 , the apparent frequency is f_2 . If v is the
	velocity of sound in air and $\frac{f_1}{f_2} = 2$, then $\frac{v}{v_1} = ?$

- (a) 2
- (b) 3

(c) 4

- 5 (d)
- The equation of sound wave is $y = 0.0015 \sin (62.4x + 316t)$. Find the wavelength of this wave 20.
- (b) 0.1 unit
- (c) 0.3 unit
- (d) None of these
- The equation of a simple harmonic progressive wave is given by $y = A \sin (100 \pi t 3x)$. Find the distance 21. between 2 particles having a phase difference of $\frac{\pi}{2}$.

- (b) $\frac{\pi}{18}$ m (c) $\frac{\pi}{6}$ m (d) $\frac{\pi}{3}$ m
- The pitch of the whistle of an engine appears to drop to $\left(\frac{5}{6}\right)$ th of original value when it passes a stationary 22. observer. If the speed of sound in air is 350 ms⁻¹ then the speed of engine is
 - 35 ms^{-1} (a)
- 70 ms^{-1} (b)
- 105 ms^{-1} (c)
- (d) 140 ms^{-1}
- A wave travelling in the positive X-direction having displacement along Y-direction as 1 m, wavelength 2π , m 23. and frequency of $\frac{1}{\pi}$ Hz is represented by
 - (a) $y = \sin(x - 2t)$

(b) $y = \sin(2\pi x - 2\pi t)$

 $y = \sin (10 \pi x - 20 \pi t)$ (c)

- (d) $y = \sin (2 \pi x + 2 \pi t)$
- A source of unknown frequency gives 4 beats s⁻¹ when sounded with a sources of known frequency 250 Hz. The 24. second harmonic of the source of unknown frequency gives five beats per second when sounded with a source of frequency 513 Hz. The unknown frequency is
 - (a) 254 Hz
- (b) 246 Hz
- (c) 240 Hz
- (d) 260 Hz

25.

26.

(a)

(a)

(c)

In sine wave, minimum distance between 2 particles always having same speed is

Two Cu wires of radii R_1 and R_2 such that $(R_1 > R_2)$. Then, which of the following is true?

(b)

(d)

Does not travel

(b)

Transverse wave travels faster in thicker wire

Travels with the same speed in both the wires

			О 0		_			
(a)	100 V	(b)	200 V	(c)	300 V	(d)	400 V	
		-	rimary and seco	ondary coil is	1 H. The pea	ak emf induced	in secondary of	coil is
Alter	rnating current of	peak value	$\left(\frac{2}{\pi}\right)$ ampere f	lows through th	ne primary co	il of the transfor	mer. The coef	ficient
(a)	0.3	(b)	0.4	(c)	0.5	(d)	0.6	
_		_		4×10^{-4} Wb. It	reduces to 10	0% of its original	I value in t seco	ond. If
(a)	$\frac{14}{15}$ f	(b)	$\frac{14}{9}$ f	(c)	$\frac{10}{9}$ f	(d)	$\frac{2}{3}$ f	
		with a vel	ocity v/6, the a	apparent freque	ncy as heard	by the observer	will be (wher	e, v =
If a s	ource emitting w	vaves of free	quency f moves	s towards an ol	server with a	velocity $\frac{v}{4}$ and	l the observer	noves
(a)	zero	(b)	π / 4	(c)	$\pi / 2$	(d)	π	
The a	angle between pa	rticle veloci	ty and wave ve	locity in a trans	sverse wave is	S		
(a)	Zero	(b)	0.5%	(c)	5%	(d)	20%	
			•		a velocity one	-fifth of the velo	ocity of sound.	What
	is the (a) The a (a) If a s away veloce (a) Magnthe e (a) Alter of m (Free	is the percentage increase. (a) Zero The angle between part (a) zero If a source emitting we away from the source velocity of sound) (a) $\frac{14}{15}$ f Magnetic flux passing the emf induced is 0.7 (a) 0.3 Alternating current of of mutual inductance (Frequency of AC = 5)	is the percentage increase in the a (a) Zero (b) The angle between particle velocity (a) zero (b) If a source emitting waves of free away from the source with a velocity of sound) (a) $\frac{14}{15}$ f (b) Magnetic flux passing through a continuous the emf induced is 0.72 mV then so the emf in	is the percentage increase in the apparent frequency (a) Zero (b) 0.5% The angle between particle velocity and wave version (a) zero (b) $\pi/4$ If a source emitting waves of frequency f moves away from the source with a velocity v/6, the avelocity of sound) (a) $\frac{14}{15}$ f (b) $\frac{14}{9}$ f Magnetic flux passing through a coil is initially 4 the emf induced is 0.72 mV then t in second is (a) 0.3 (b) 0.4 Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere for mutual inductance between primary and second (Frequency of AC = 50 Hz) (a) 100 V (b) 200 V	is the percentage increase in the apparent frequency? (a) Zero (b) 0.5% (c) The angle between particle velocity and wave velocity in a trans (a) zero (b) $\pi/4$ (c) If a source emitting waves of frequency f moves towards an obaway from the source with a velocity v/6, the apparent freque velocity of sound) (a) $\frac{14}{15}$ f (b) $\frac{14}{9}$ f (c) Magnetic flux passing through a coil is initially 4×10^{-4} Wb. It the emf induced is 0.72 mV then t in second is (a) 0.3 (b) 0.4 (c) Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the of mutual inductance between primary and secondary coil is (Frequency of AC = 50 Hz) (a) 100 V (b) 200 V (c)	is the percentage increase in the apparent frequency? (a) Zero (b) 0.5% (c) 5% The angle between particle velocity and wave velocity in a transverse wave is (a) zero (b) $\pi/4$ (c) $\pi/2$ If a source emitting waves of frequency f moves towards an observer with a away from the source with a velocity v/6, the apparent frequency as heard velocity of sound) (a) $\frac{14}{15}$ f (b) $\frac{14}{9}$ f (c) $\frac{10}{9}$ f Magnetic flux passing through a coil is initially 4×10^{-4} Wb. It reduces to 10 the emf induced is 0.72 mV then t in second is (a) 0.3 (b) 0.4 (c) 0.5 Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the primary coof mutual inductance between primary and secondary coil is 1 H. The per (Frequency of AC = 50 Hz)	is the percentage increase in the apparent frequency? (a) Zero (b) 0.5% (c) 5% (d) The angle between particle velocity and wave velocity in a transverse wave is (a) zero (b) $\pi/4$ (c) $\pi/2$ (d) If a source emitting waves of frequency f moves towards an observer with a velocity $\frac{v}{4}$ and away from the source with a velocity $v/6$, the apparent frequency as heard by the observer velocity of sound) (a) $\frac{14}{15}$ f (b) $\frac{14}{9}$ f (c) $\frac{10}{9}$ f (d) Magnetic flux passing through a coil is initially 4×10^{-4} Wb. It reduces to 10% of its original the emf induced is 0.72 mV then t in second is (a) 0.3 (b) 0.4 (c) 0.5 (d) Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the primary coil of the transfor of mutual inductance between primary and secondary coil is 1 H. The peak emf induced (Frequency of AC = 50 Hz) (a) 100 V (b) 200 V (c) 300 V (d)	(a) Zero (b) 0.5% (c) 5% (d) 20% The angle between particle velocity and wave velocity in a transverse wave is (a) zero (b) $\pi/4$ (c) $\pi/2$ (d) π If a source emitting waves of frequency f moves towards an observer with a velocity $\frac{v}{4}$ and the observer away from the source with a velocity $v/6$, the apparent frequency as heard by the observer will be (when velocity of sound) (a) $\frac{14}{15}$ f (b) $\frac{14}{9}$ f (c) $\frac{10}{9}$ f (d) $\frac{2}{3}$ f Magnetic flux passing through a coil is initially 4×10^{-4} Wb. It reduces to 10% of its original value in t second the emf induced is 0.72 mV then t in second is (a) 0.3 (b) 0.4 (c) 0.5 (d) 0.6 Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the primary coil of the transformer. The coeff of mutual inductance between primary and secondary coil is 1 H. The peak emf induced in secondary of (Frequency of AC = 50 Hz) (a) 100 V (b) 200 V (c) 300 V (d) 400 V

(d)

Transverse wave travels faster in thinner wire

λ

- Learning with the Speed of Mumbai and the Tradition of Kota
- 32. Some current is flowing in two AC circuits. First contains only inductance and second contains only capacitance. If frequency of AC is increased for both, the current will
 - (a) increase in first circuit and decrease in second (b) increase in both circuits
 - (c) decreases in both circuits (d) decrease in first circuit and increase in second
- 33. Two coils A and B have metal inductance 2×10^{-2} henry. If the current in the primary is $i = 5 \sin(10 \pi t)$ then the maximum value of emf induced in coil B is
 - (a) π volt (b) $\frac{\pi}{2}$ volt (c) $\frac{\pi}{3}$ volt (d) $\frac{\pi}{4}$ volt
- 34. In L-C-R series circuit, an alternating emf e and current i are given by the equations $e=100 \sin{(100 \, t)}$ volt, $i=100 \sin{\left(100 t + \frac{\pi}{3}\right)} \, mA$

The average power dissipated in the circuit will be

- (a) 100 W (b) 10 W
 - $10 \, \text{W}$ (c) $5 \, \text{W}$
- (d) 2.5 W

- 35. AC measuring instruments measures
 - (a) peak value
 - (b) rms value
- (c) any value
- (d) average value

- 36. The rms value of current I_{rms} is
 - (a) $\frac{I_0}{2\pi}$
- (b) $\frac{I_0}{\sqrt{2}}$

- (c) $\frac{2I_0}{\pi}$
- (d) $\sqrt{2}I_0$

(Where, I₀ is the value of peak current)

- 37. If the conductance and capacitance are both doubled in L-C-R circuit, the resonant frequency of the circuit will
 - (a) decrease to one-half the original value
- (b) decrease to one-fourth the original value
- (c) increase two twice the original value
- (d) decrease to twice the original value

Learning with	the Speed	of Mumbai an	d the Tradition	of Kota
---------------	-----------	--------------	-----------------	---------

		interesit comp or sen	r-inducta	ance L_1 and L_2 are pla	ced clos	se to each other, so the	at effecti	ive flux in one coil is		
	comple	etely linked with other	her. If N	I is the mutual induct	ance bet	ween them, then				
	(a)	$M = L_1/L_2$	(b)	$M = L_1 L_2$	(c)	$M = \sqrt{L_1 L_2}$	(d)	$\mathbf{M} = \left(\mathbf{L}_1 \mathbf{L}_2\right)^2$		
39.	What	will be the self-indu	ctance o	of a coil of 100 turns i	f a curre	nt of 5 A produces a	magnetic	e flux 5×10^{-5} Wb?		
	(a)	1 mH	(b)	10 mH	(c)	1 μΗ	(d)	10 μΗ		
40.	In L-C	-R circuit power fac	ctor at re	esonance is						
	(a)	less than one	(b)	greater than one	(c)	unity	(d)	Can't predicted		
41.	In a L curren		inducta	nce and 4 Ω resistar	nce, emf	$E = 4 \cos 1000t \text{ V i}$	is applie	d. The amplitude of		
	(a)	0.8 A	(b)	$\frac{4}{7}$ A	(c)	1 A	(d)	$\frac{4}{\sqrt{7}}$ A		
42.	Average power is the L-C-R circuit depends upon									
	(a)	current			(b)	phase difference on	ıly			
	(c)	emf			(d)	current, emf and ph	ase diffe	erence		
43.		a current of 2 A is ance of the coil.	passed tl	hrough a coil of 100 t	turns, flu	x associated with it i	$s 5 \times 10^{\circ}$	⁻⁵ Wb. Find the self-		
	(a)	$4 \times 10^{-3} \text{ H}$	(b)	$4\times10^{-2}~H$	(c)	$2.5\times10^{-3}\mathrm{H}$	(d)	$10^{-3} \mathrm{H}$		
44.		a rod of length l is ne emf across its end		with angular velocity	y of ω	in a perpendicular fie	eld of in	duction B, about one		
	(a)	$\mathrm{B}l^2\omega$	(b)	$\frac{\mathrm{B}l^2\omega}{2}$	(c)	$\mathrm{B}l\omega$	(d)	$\frac{\mathrm{B}l\omega}{2}$		

- 45. Same current is flowing in two alternating circuits. The first circuit contains only inductance and the other contains only a capacitor. If the frequency of the emf of AC is increased, the effect on the value of the current will be
 - (a) increases in the first circuit and decreases in the other
 - (b) increases in both the circuits
 - (c) decreases in both the circuits
 - (d) decreases in the first circuit and increases in the other
- 46. In an AC circuit, the instantaneous values of emf and current are $e = 200 \sin 314 \text{ tV}$ and $I = \sin \left(314t + \frac{\pi}{3}\right)A$. The average power consumed (in W) is
 - (a) 200
- (b) 100
- (c) 50

- (d) 25
- 47. An alternating voltage $E=200\sqrt{2}~\sin{(100~t)}$ is connected to 1 μF capacitor through AC ammeter. The reading of ammeter shall be
 - (a) 10 mA
- (b) 20 mA
- (c) 40 mA
- (d) 80 mA
- What is the value of inductance L for which the current is a maximum in a series LCR circuit with $C = 10 \ \mu F$ and $\omega = 1000 \ s^{-1}$?
 - (a) 100 mH

- (b) 1 mH
- (c) Cannot be calculated unless R is known
- (d) 10 mH

49. A transformer is used to light a 100 W and 110 V lamp from a 220 V mains. If the main current is 0.5 A, the efficiency of the transformer is approximately

- (a) 30%
- (b) 50%
- (c) 90%
- (d) 10%
- 50. In an AC circuit the emf (e) and the current (i) at any instant are given respectively by $e=E_0\,sin\,\,\omega\,t$

$$i = I_0 \sin(\omega t - \phi)$$

The average power in the circuit over one cycle of AC is

- (a)
- $(b) \qquad \frac{E_0 I_0}{2} \sin \varphi \qquad \qquad (c) \qquad \frac{E_0 I_0}{2} \cos \varphi$
- (d) E_0I_0

Date: 27.11.2022

ABHIMANYU BATCH CHEMISTRY: REVISION TEST-4 (SET A) Topic: Ionic Equilibrium + Chemical Bonding + p-block + d & f block

51.	Variable valency is generally shown by									
	(a)	s-block elements			(b)	p-block elements				
	(c)	Transition elen	nents		(d)	All elements in peri	odic ta	ble		
52.	The c	The common oxidation states of gold are								
	(a)	1, 2 and 3	(b)	1,3	(c)	2 and 3	(d)	3, 4		
53.	In wh	In which of the following transition metal ions d-d transition is possible?								
	(a)	Cu^+	(b)	$\mathbf{Z}\mathbf{n}^{+2}$	(c)	Ti^{+3}	(d)	Sc^{+3}		
54.	Which	Which of the following has the highest ionic radii?								
	(a)	Cr ⁺³	(b)	Mn^{+3}	(c)	Fe^{+3}	(d)	Co^{+3}		
55.	The coinage metals are									
	(a)	Iron, Cobalt, Nickel			(b)	Copper and Zinc				
	(c)	Copper, Silver	and Gold		(d)	Gold and Platinum				
56.	In first transition series, the melting point of Mn is low because									
	(a)	Due to d ¹⁰ conf	iguration,	metallic bonds ar	e strong					
	(b)	Due to d ⁷ confi	guration, n	netallic bonds are	weak					
	(c)	Due to d ⁵ configuration, metallic bonds are weak								
	(d)	None of these								
57.	In wh	ich of the followi	ng is not ar	n element?						
	(a)	Graphite	(b)	Diamond	(c)	22-carat gold	(d)	Rhombic, sulphur		

58.	Which of the following statement is incorrect?									
	(a)	NO is heavier than	O_2 .							
	(b)	The formula of heavy water in D_2O .								
	(c)	Nitrogen diffuses faster than oxygen through an orifice.								
	(d)	NH ₃ can be used as a refrigerant.								
59.	The bo	nds present in N ₂ O ₅	are							
	(a)	only ionic			(b)	covalent and coordin	nate			
	(c)	only covalent			(d)	covalent and ionic				
60.	Among	g the trihalides of ni	trogen, v	which is the least basi	c?					
	(a)	NF ₃	(b)	NCl ₃	(c)	NBr ₃	(d)	Ni ₃		
61.	The ge	eneral electronic co	nfigurati	on of the outermost	and per	nultimate shell for a	d-block	element is given by		
	(n – 1)	$s^2p^6d^xns^y$								
	For a d	ivalent cation of an	element	with $n = 4$, $x = 6$ and	1 y = 2, n	number of protons is				
	(a)	24	(b)	25	(c)	26	(d)	27		
62.	The ou	ter electron configu	ration of	f Gd (Atomic No. 64)	is					
	(a)	$4f^3 5d^5 6s^2$	(b)	$4f^8 5d^0 6s^2$	(c)	$4f^45d^46s^2$	(d)	$4f^{7}5d^{1}6s^{2}$		
63.	Which	of the following is	the most	electropositive eleme	ent?					
	(a)	Aluminium	(b)	Phosphorus	(c)	Magnesium	(d)	Sulphur		
64.	If the a	tomic number of an	elemen	t is 33, it will be place	ed in the	periodic table in the				
	(a)	first group	(b)	fourth group	(c)	fifth group	(d)	seventh group		
65.	In the i	soelectronic species	the ion	ic radii (Å) of N³-, O²	and F	are respectively give	n by			
	(a)	1.71, 1.40, 1.36	(b)	1.71, 1.36, 1.40	(c)	1.36, 1.40, 1.71	(d)	1.36, 1.71, 1.40		

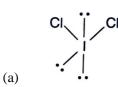
Which of the following is correct?

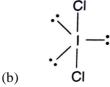
66.

All carbonates are soluble in water (a) (b) Carbonates of Na, K and NH₄ are soluble in water Carbonates of Ca, Sr, Ba are soluble in water (c) (d) All carbonates are insoluble 67. In Castner-Kellner cell for production of sodium hydroxide, brine is electrolyzed using graphite electrodes (a) molten sodium chloride is electrolyzed (b) (c) sodium amalgam is formed at mercury cathode brine is electrolyzed with Pt electrodes (d) 68. The pair of compound having metals in their highest oxidation state is MnO₂, FeCl₃ (a) (b) [MnO₄]⁻, CrO₂Cl₂ [NiCl₄]²⁻, [CoCl₄]⁻ $[Fe(CN)_6]^{3-}, [Co(CN)_3]$ (c) (d) 69. Zinc-copper couple that can be used as a reducing agent is obtained by (a) mixing of zinc dust and copper gauge (b) zinc coated with copper copper coated with zinc zinc and copper wires welded together (c) (d) 70. Which of the following statements is correct? (a) Iron belongs to third transition series of the periodic table (b) Iron belongs to f-block of the periodic table (c) Iron belongs to first transition series Iron belongs to group VIII of the periodic table (d) 71. Isostructural species are those, which have the same shape and hybridization. Among the given species, identify the isostructural pairs. (a) NF₃ and BF₃ (b) BF₄⁻ and NH₄⁺ (c) BCl₃ and BrCl₃ (d) NH₃ and NO₃⁻ **Space for Rough Work**

- 72. Which of the following is paramagnetic?
 - (a) NO^{-}
- O_2^{2-} (b)
- CN^{-} (c)
- (d) CO
- 73. Which of the following statements is correct regarding BeCl₂ molecule?
 - It violates octet rule and has sp² hybridisation (a)
- (b) It has sp hybridization and follows octet rule
- It violates octet rule and has linear structure (c)
- (d) All of the above are true
- 74. In NO₃ ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are
 - 2, 2 (a)
- (b) 3.1
- (c) 1, 3
- (d) 4, 0
- 75. What is the type of hybridization of carbon atoms marked with star?

$$\mathbf{H}_{2}\mathbf{C}^{*} = \mathbf{C} - \mathbf{C}^{*} - \mathbf{O} - \mathbf{H}$$


$$\mathbf{H} \quad \mathbf{O}$$


- sp^2 , sp(a)
- sp^2, sp^2 (b)
- (c) sp, sp^2

(c)

(d) None of these

76. Which of the following show correct structure of ICI₂?

- (d) None of these
- 77. Among the following molecules, which one have trigonal planar structure?

XeO₃, SO₃, BF₃, NH₃

- XeO₃ and BF₃ (a)
- (b) BF₃ and SO₃
- NH₃ and SO₃ (c)
- (d) All of these

- Which of the following set possess sp³-hybridisation? 78.
 - IO_4^-, ICI_4^-, IF_4^+ (a)
- (b)
- XeO_3, XeO_4, XeF_4 (c) $SO_3^{2-}, SO_4^{2-}, SO_5^{2-}$
- (d) PCI_4^+, BF_4^-, ICI_4^-

79. Hybridisation of the nitrogen atom and electronic geometry around nitrogen atom in pyridine is

- (a) sp³, pyramidal
- (b) sp², trigonal planar (c)
- sp², linear
- (d) sp³, tetrahedral
- 80. Match the type of bond (given in Column I) with method of formation (given in Column II) and choose the correct option from the codes given below.

	Column I		Column II
A.	σ-bond	1.	Lateral overlapping
B.	Covalent bond	2.	Sharing of electrons
C.	Ionic bond	3.	Transfer of electrons
D.	π-bond	4.	Donating an electron
		5.	Accepting an electron
		6.	Axial overlapping

Codes

	\mathbf{A}	В	\mathbf{C}	D		\mathbf{A}	В	\mathbf{C}	D
(a)	6	2	3	1	(b)	3	2	6	1
(c)	1	2	3	4	(d)	2	4	5	6

- 81. Which of the following is the strongest base?
 - (a) AsH_3
- (b) NH_3
- (c) PH₃
- (d) SbH_3

- 82. The number of P O P bonds in cyclic metasphoric acid is
 - (a) zero
- (b) two
- (c) three
- (d) four
- 83. Which of the most thermodynamically stable allotropic form of phosphorus?
 - (a) red
- (b) white
- (c) black
- (d) yellow

84.	What may be expected when phosphine gas is mixed with chlorine gas?										
	(a)	(a) PCl ₅ and HCl are formed and mixture cools down									
	(b)	(b) PH ₃ . Cl ₂ is formed with warming up									
	(c)	The mixture only cools down									
	(d)	PCl ₃ and HCl are	formed a	and the mixture warm	ıs up						
85.	Regula	Regular use of which of the following fertilizer increases the acidity of soil?									
	(a)	Potassium nitrate			(b)	Urea					
	(c)	Superphosphate of	f lime		(d)	Ammonium sulpha	te				
86.	In P ₄ O	In P_4O_6 and P_4O_{10} , the number of oxygen atoms bonded to each phosphorus atoms are respectively									
	(a)	3 and 3	(b)	4 and 4	(c)	3 and 4	(d)	4 and 3			
87.	The number of unpaired electrons present in the species $[Fe(H_2O)_5NO]^{2+}$ which is formed during 'brown ring' test										
	is										
	(a)	2	(b)	3	(c)	4	(d)	1			
88.	The co	njugate acid and ba	se differ	with respect to each	other by	·					
	(a)	water	(b)	hydroxide ion	(c)	hydronium ion	(d)	proton			
89.	Which	of the following Ca	ANNOT	act both as Bronsted	acid and	d as Bronsted base?					
	(a)	HSO^{-}_{4}	(b)	HCO_3^-	(c)	NH_3	(d)	HCl			
90.	In the	reaction $B(OH)_3 + 2$	$2H_2O \rightarrow$	$[B(OH)_4]^- + H_3O^+B_0$	(OH) ₃ fu	nction as					
	(a)	Bronsted acid	(b)	Lewis acid	(c)	Protonic acid	(d)	Lewis base			
91.	pH + p	OH is equal to	·								
	(a)	0	(b)	7	(c)	14	(d)	10			
92.	The pH	H of 0.01 M NaOH	aq) soluti	on will be							
	(a)	9	(b)	7.01	(c)	2	(d)	12			

93.	What is the pH of millimolar solution of ammonium hydroxide which is 20% dissociated/										
	(a)	3.699	(b)	10.301	(c)	4.691	(d)	9.301			
94.	The di	ssociation constant	(K _a) and	percent of degree of	dissocia	ation (α) of a weak m	onobasi	e acid solution of 0.1			
	M with	h a pH = 5, are respe	ectively _	·							
	(a)	10^{-9} , 1	(b)	10^{-9} , 10^{-4}	(c)	10^{-9} , 10^{-2}	(d)	10^{-5} , 10^{-2}			
95.	Which	of the following sal	lts will g	give the highest pH in	water?						
	(a)	KCl	(b)	NaCl	(c)	Na ₂ CO ₃	(d)	CuSO ₄			
96.	What	is the solubility prod	luct (K _{sp})) of calcium phosphat	te in pur	e water? [S = molar se	olubility]			
	(a)	$108 \mathrm{S}^5$	(b)	$72 S^3$	(c)	6 S ⁵	(d)	$121 S^2$			
97.	If the	If the solubility product K_{sp} of a sparingly soluble salt MX_2 at 25°C is 1.0×10^{-11} , the solubility of the salt in mole									
	litre ⁻¹ at this temperature will be										
	(a)	2.46×10^{14}	(b)	1.36×10^{-4}	(c)	2.60×10^{-7}	(d)	1.20×10^{-10}			
98.	Which	of the following is	correct r	regarding bond energi	es of NO	O, NO ⁺ and NO ⁻ ?					
	(a)	$NO^-\!>NO>NO^+$	(b)	$NO^{\scriptscriptstyle +}\!>NO^{\scriptscriptstyle -}\!>NO$	(c)	$NO > NO^{\scriptscriptstyle -} \! > NO^{\scriptscriptstyle +}$	(d)	$NO^{\scriptscriptstyle +}\!>NO>NO^{\scriptscriptstyle -}$			
99.	Which of following requires maximum energy to undergo decomposition?										
	(a)	O_2	(b)	C_2	(c)	${\rm O_2}^{\scriptscriptstyle +}$	(d)	N_2			
100.	What	is the structure of Xe	eF_6 ?								
94. T M (2 95. W (2 96. W (2 97. If (2 98. W (2 98. W (2 99. W (2 100. W	(a)	Tetrahedral	(b)	Distorted octahedra	l (c)	Octahedral	(d)	None of these			

Max. Marks: 100 Date: 27.11.2022

ABHIMANYU BATCH PHYSICS: REVISION TEST-4 (SET A) ANSWER KEY Topics: EMI, Oscillation, Sound Waves and Stationary Waves

1.	(a)	2.	(d)	3.	(b)	4.	(c)	5.	(b)
6.	(b)	7.	(d)	8.	(d)	9.	(a)	10.	(c)
11.	(c)	12.	(d)	13.	(b)	14.	(a)	15.	(a)
16.	(b)	17.	(a)	18.	(c)	15.	(b)	20.	(b)
21.	(a)	22.	(b)	23.	(a)	24.	(a)	25.	(a)
26.	(b)	27.	(d)	28.	(c)	29.	(c)	30.	(c)
31.	(b)	32.	(d)	33.	(a)	34.	(d)	35.	(b)
36.	(b)	37.	(a)	38.	(c)	39.	(a)	40.	(c)
41.	(a)	42.	(d)	43.	(c)	44.	(b)	45.	(d)
46.	(c)	47.	(b)	48.	(a)	49.	(c)	50.	(c)

Date: 27.11.2022

ABHIMANYU BATCH CHEMISTRY: REVISION TEST-4 (SET A) ANSWER KEY Topic: Ionic Equilibrium + Chemical Bonding + p-block + d & f block

51.	(c)	52.	(b)	53.	(c)	54.	(a)	55.	(c)
56.	(c)	57.	(c)	58.	(a)	59.	(b)	60.	(a)
61.	(c)	62.	(d)	63.	(c)	64.	(c)	65.	(a)
66.	(b)	67.	(c)	68.	(b)	69.	(b)	70.	(c)
71.	(b)	72.	(a)	73.	(c)	74.	(d)	75.	(b)
76.	(b)	77.	(b)	78.	(c)	79.	(b)	80.	(a)
81.	(b)	82.	(c)	83.	(c)	84.	(a)	85.	(d)
86.	(c)	87.	(b)	88.	(d)	89.	(d)	90.	(b)
91.	(c)	92.	(d)	93.	(b)	94.	(c)	95.	(c)
96.	(a)	97.	(b)	98.	(d)	99.	(d)	100.	(b)